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ABSTRACT 
 
     Gloeotrichia echinulata is a cyanobacteria species that has been increasingly forming 
blooms in oligotrophic lakes in the Northeastern United States. The Belgrade Lakes in 
central Maine have experienced increasing blooms over the past decades. Long Pond and 
Great Pond in the Belgrade Lakes region are popular locations for summer tourism and 
year-round residents. Research into G. echinulata is important to the Belgrade 
community because of potential effects to water quality, public health, and recreation. 
Studying G. echinulata bloom density throughout the summer and how it may affect the 
phosphorous cycle, the nitrogen cycle, and the plankton community will help scientists 
inform policy makers on water quality initiatives. 
     G. echinulata can serve as a warning sign for lake eutrophication and blooms can 
mark tipping points between eutrophication stable states. Further research should focus 
on luxury phosphorus uptake from the sediment during recruitment because it could 
mitigate the positive effects alum treatment.  
     The use of 15-nitrogen (N) stable isotope tracers is a valuable tool for understanding 
nitrogen cycling in aquatic ecosystems. Traditionally, analytical measurements of 14N:15N 
ratios involves a time consuming process of incubations to concentrate N onto filters for 
analysis by isotope-ratio mass spectrometry. The process also requires large sample 
volumes, which is a challenge for microcosm experiments. Here, we present a technique 
for measuring 14N:15N in ammonium using ESI-TOF mass spectrometry, to better 
characterize nitrogen cycling in lake and estuarine systems. 
     The G. echinulata blooms are linked to chlorophyll-a concentrations, pheophytin 
concentrations, and total phosphorus concentrations. G. echinulata is possibly a driver of 
eutrophication and it is an important organism to study, especially in low nutrient lakes. 
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CHAPTER I: LITERATURE REVIEW 

Importance of Studying Cyanobacteria in Lake Systems 

     Cyanobacteria are a ubiquitous life form present in a variety of aquatic ecosystems 

and are commonly referred to as “blue-green algae” because many contain the 

photosynthetic pigments phycocyanin and chlorophyll-a (Speer 1995). Cyanobacteria are 

among the oldest organisms found in the fossil record, dating back 3,500 Ma (Golubic 

and Seong-Joo 1999). Cyanobacteria played a role in the evolution of primary production 

and were the ancestors to the symbiotic origins of plastids in algae and plants (Golubic 

and Seong-Joo 1999).  

     Researchers have found evidence of increased cyanobacterial blooms in eutrophic, 

mesotrophic, and oligotrophic lakes over the past three hundred years (Hallegraeff 1993; 

Van Dolah 2000; Anderson et al. 2002; Paerl and Huisman 2008, 2009). Many of the 

blooms occurring in oligotrophic lakes (as well as in higher trophic state lakes) can be 

attributed to increased nutrient concentrations from anthropogenic sources (Winter et al., 

2011). Understanding cyanobacterial bloom dynamics in these very different systems is 

imperative to maintaining healthy and functioning ecosystems (Carey et al., 2012).  

Cyanobacteria Overview 

     Organisms such as algae, cyanobacteria, and phytoplankton are the basis of food webs 

in lake ecosystems. Only when their populations expand quickly can they become 

nuisances. Algal blooms can be detrimental from an economic, health, social and 

ecological perspective (Istvánovics et al. 1993). Gloeotrichia echinulata is the species 

subject of this research. G. echinulata is a nitrogen-fixing cyanobacteria of large 

filamentous colonies (1-3 mm diameter) that are increasing in abundance in low-nutrient 

systems in the northeastern United States and Canada (Carey et al. 2008). So far, the 

abundance of G. echinulata in United States lake systems is unknown because 

phytoplankton monitoring is limited spatially and temporally (Carey et al. 2012).  

Impact on Socioeconomics 

     There is increasing evidence that cyanobacterial blooms could impact water quality 

and prevent, recreation which, in turn would decrease property values and tourism 

(Michael et al. 1996). There is a relationship between demand for recreation and water 

clarity, which could be jeopardized by cyanobacterial blooms (Soderqvist and Scharin 
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2000). In the present day, Maine lake ecosystems are vital to providing community 

members with a sense of place combined with economic value through tourism and 

recreation (Fleming and Love 2012). There are over 5,000 lakes Maine with an area of 

over one acre and many of these are important culturally (Water Resources Program 

1995). Native Americans in Maine used the lakes for transportation, then loggers in the 

1800s shuttled lumber great distances across lakes (Water Resources Program 1995). In 

the early 1900s, the “great lakes” in Maine, including Moosehead Lake and Rangeley 

Lake, became vacation destinations for the New England elite. As the Great Depression 

affected the economy and the fish stocks diminished from overfishing, tourism began to 

decline (Water Resources Program 1995).  

Impact on Human and Ecosystem Health 

     Toxins produced by cyanobacteria pose a threat to water bodies used for recreation 

and drinking water sources such as lakes and reservoirs. Gloeotrichia echinulata is 

known to cause skin irritation for swimmers, which has a negative effect on recreation 

(Backer 2002; Serediak and Huynh 2011). Some species of cyanobacteria produce free 

toxins or toxins bound to the cell that can be dangerous to human health (Pretty et al. 

2003). Cyanobacteria can produce four types of cyanotoxins: hepatoxins, neurotoxins, 

cytotoxic alkaloids, and dermatoxins (Carmichael 1997).  

The bioaccumulation of toxins, the build up of toxins in organisms higher in the 

food chain, and cause a greater toxicity to that organism (Preece et al. 2015). 

Gloeotrichia echinulata produces microcystin-LR toxin, which in turn is an inhibitor of 

protein phosphatase synthesis and creates oxidative stress in mammalian cells (Corbel et 

al. 2014). Researchers monitoring an oligotrophic lake in central New Hampshire, USA 

found hepatotoxin microcystin-LR produced by G. echinulata (Carey et al. 2006). The G. 

echinulata contained microcystin-LR at mean concentrations of 97.07 ± 7.78 (1 SE) ng 

MC-LR g−1 dry wt colonies (Carey et al. 2006). Microcystin-LR is released during cell 

lysis, death or senescence and enters organisms via ingestion (Park et al. 1998; Kinnear 

2010). Cyanotoxins are known to bioaccumulate in plants, tadpoles, mussels, rainbow 

fish, and crayfish (Saker and Eaglesham 1999; Anderson et al. 2003). Bioaccumulation of 

cyanotoxins is potentially dangerous to human health through the consumption of fish, 

mussels, and other organisms. This fact suggests that recent outbreaks of G. echinulata
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in oligotrophic lakes used as water sources throughout New England may pose a health 

concern to humans (Carey et al. 2006).  

Removal and Monitoring of Cyanotoxins 

     Cyanotoxins are an increasing concern because they are difficult to remove from 

water sources through common water treatment procedures (Westrick et a., 2010). 

However, there are several natural processes that can filter out cyanotoxins over an 

extended period of time. The cyanotoxins are buried in the sediments where biodegrading 

bacteria (including Sphingomonas, Paucibacter toxinivorans, microcystinivorans, 

Sphingosinicella, Burkholderia) are able to break them down. However, these bacteria 

are unable to survive in the anoxic hypolimnion common in stratified, temperate 

mesotrophic and eutrophic lakes, thereby preventing this breakdown (Corbel et al. 2014). 

Breakdown of cyanotoxins can occur via other mechanisms, such as during brief periods 

following lake mixing with oxic hypolimnion, warm water temperatures, and an alkaline 

environment promote cyanotoxin breakdown (D’Anglada et al. 2015). Photodegradation 

can also aid in the breakdown of cyanotoxins, but this is limited to clear-water lakes and 

does not occur until after the bloom (Hyenstrand et al. 2003; Corbel et al. 2014). Lastly, 

benthic soil on the lake bottom with a high concentration of organic carbon and clay can 

filter toxins (Corbel et al. 2014).  

     Monitoring, studying and predicting harmful algal blooms are crucial in maintaining 

clean drinking water and protecting aquatic ecosystems. As harmful algal blooms become 

more common with climate change (Carey et al. 2012), it is important to understand 

bloom dynamics to prevent harm to human health. Academic institutions, research 

institutes, and governmental organizations are focusing on developing equipment that can 

measure water quality, DNA of microorganisms, concentrations of cyanotoxins. This 

technology will be important in the future for assessing long term toxin production in 

many different types of ecosystems (Ryan et al. 2008; Seltenrich 2014).  

Cyanobacteria Impact on Plankton Communities 

Physical Impact 

     Lastly, cyanobacterial blooms can have various positive and negative effects on 

plankton communities. The bloom can be detrimental to the plankton community because 

they limit sunlight available below the bloom in the water column (Leng 2009). The 
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limited sunlight will create competition between benthic macroinvertebrates, which 

decreases the diversity of species (Shaw et al. 2009). Light limitation is a detrimental side 

effect of cyanobacterial blooms that can lead to decreased biomass and species diversity, 

especially in eutrophic systems where light limitation is already an issue (Shaw et al. 

2009).  

Chemical Impact 

     Cyanobacterial blooms can also affect lake properties by influencing oxygen and 

nutrient concentrations. An increase in phytoplankton biomass can cause large diel 

dissolved oxygen shifts (Rangel et al. 2009). These fluctuations in dissolved oxygen 

disrupt fish, plant, and planktonic growth that can eventually result in oxygen crashes 

(Leng 2009). Due to light and temperature cues in the early-fall, the cyanobacteria 

blooms senesce simultaneously creating a period of anoxia as the available oxygen is 

used in microbial decomposition (Hudnell 2008).  

     In a nutrient limited ecosystem, the balance of nutrients is critical for phytoplankton 

growth. Many cyanobacteria possess the ability to sequester luxury phosphorus, stored 

phosphorus for later use, from the sediment and fix biologically inert nitrogen from the 

water (Heckey and Kilham 1988). This gives the cyanobacteria a competitive advantage 

over other phytoplankton and decreases nutrient availability, which can reduce trophic 

level growth (Heckey and Kilham 1998).  

     Alternatively, cyanobacteria such as Gloeotrichia echinulata have been shown to 

subsidize plankton grown through nutrient leakage during pelagic growth, senescence, or 

by injury due to grazing (Foree and McCarty 1970; Agawin et al. 2007). The extra 

nutrients can facilitate phytoplankton growth in nutrient-limiting environments such as in 

oligotrophic and mesotrophic lake system (Pitois et al. 1997). Releasing the nutrient 

limitations on a phytoplankton community can increase the richness and diversity of 

phytoplankton taxa (Carey et al. 2014b). In eutrophic lakes the effect of extra nutrients 

from G. echinulata is less noticeable and does not cause a significant change in 

biovolume or species composition (Carey et al. 2014b).  

Biological Impact 

     Cyanotoxins are harmful not only to humans, but to the aquatic ecosystem as well. 

Common cyanotoxins such as hepatoxins and neurotoxins have different mechanisms of 



 5  

action and different exposure methods, but both create reduced feeding and survival for 

zooplankton (Freitas et al. 2014). Importantly, a single type of cyanotoxin is commonly 

not present alone; different types of cyanotoxins can be present in an ecosystem at the 

same time. The synergistic effects of multiple cyanotoxins cause more detrimental lasting 

effects on zooplankton than each individual cyanotoxin alone. Cyanotoxins can make 

zooplankton less palatable to fish and other predators, which influences every step of the 

food web (Freitas et al. 2014).  

     While less understood, there is evidence that cyanobacteria, such as Gloeotrichia 

echinulata, may be providing other subsidies such as protective bioactive secondary 

metabolites (Gross 2003), and antibacterial or antifungal compounds (Legrand et al. 

2003) to the wider plankton community. Secondary metabolites are organic molecules 

that provide defense against stress and facilitate reproductive process, among other 

qualities (Mandal and Rath 2015). These protective subsidies in combination with 

increased nutrients can enhance growth for phytoplankton communities (Gross 2003).  

     Secondary metabolites are already used as antibacterial and antifungal agents, 

chemotherapy for cancer, cholesterol-lowering agents, immunosuppressants, anti-

parasitic agents, herbicides, diagnostics, and tools for research (Mandal and Rath 2015). 

Cyanobacteria subsidies are a current area of research in pharmaceutical drug 

development (Mandal and Rath 2015).  

Gloeotrichia echinulata  

     This research focuses specifically on the cyanobacterium Gloeotrichia echinulata, a 

nitrogen fixing, large (~2 mm), colonial cyanobacteria species that has been increasing 

globally (Carey et al. 2008). G. echinulata is increasing in oligotrophic ecosystems which 

makes it an interesting study organism due to its potential effect on phytoplankton 

communities (Carey et al. 2014b), nutrient dynamics (Istánovics et al. 1993), and human 

health (Carey et al. 2007).  
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Figure 1. Gloeotrichia echinulata colony with individual filaments visible in collections 
taken from Long Pond, Maine. Image captured by Bigelow Laboratory for Ocean 
Sciences, Boothbay Harbor, ME.  
 

Gloeotrichia echinulata Range 

     Over the past decade, reports of Gloeotrichia echinulata blooms in oligotrophic and 

mesotrophic lakes in the northeastern United States have increased (Carey et al. 2012). 

Scientists hypothesize that the G. echinulata spores lay dormant in the sediment for 

decades or centuries until the climate impacts and anthropogenic effects created more 

favorable conditions (Karlsson et al. 2003; Carey et al. 2007; Carey and Rengefors 2010). 

Many lake ecosystems currently experiencing G. echinulata blooms have had markedly 

increased densities compared to the recent past, which has implications for water quality 

(Carey et al. 2012). This density increase is likely due to a combination of higher global 

temperatures (Karlsson-Elfgren et al. 2004), increasing sediment P concentrations, and 

watershed development (Carey et al. 2012).  

     Gloeotrichia echinulata blooms have been studied in 27 oligotrophic lakes in Maine 

and New Hampshire between 2002-2006 (Carey et al. 2008). The regional synchronicity 

of these blooms indicates that light and temperature are possible cues that trigger blooms 

(Carey et al. 2012). In these studies, Carey et al. (2012) found that the intensity of the 

blooms varied amoung lakes, but that within lakes the variation was minimal from year to 

year.  
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Gloeotrichia echinulata Life Cycle 

     Gloeotrichia echinulata has a meroplanktonic life history with many stages seasonally 

(Livingston and Jaworski 1980; Carey et al. 2012). Like many other cyanobacteria 

species, G. echinulata produce dormant cells called akinetes that are embedded in the 

sediment to protect against adverse environmental conditions (Livingston and Jaworski 

1980; Nicholas and Adams 1982; Adams and Duggan 1999; Kaplan-Levi et al. 2010). 

The akinetes are reproductive spores embedded in a dense mucilage that germinate in the 

sediment and migrate into the water column (Kaplan-Levi et al. 2010). The G. echinulata 

increase in abundance during the summer by recruitment from the sediment and division 

that occurs in the water column (Reynolds 2006).  

     Recruitment occurs due to abiotic factors such as temperature, light conditions, 

stratification, dissolved oxygen, and nutrients (Forsell and Pettersson 1995; Karlsson 

2003; Carey et al. 2008; Wood et al. 2009). Shallow, sheltered coves create microhabitats 

that have higher recruitment because of wind redistribution, which concentrates the 

akinetes to certain areas of the lake (Forsell and Pettersson 1995; Karlsson-Elfgren et al. 

2003; Wynne et al. 2011; Carey et al. 2014a). The shallow pelagic regions provide the 

best habitat for recruitment and the highest recruitment occurs at a depth of less than 5 

meters (Karlsson 2003; Carey et al. 2008). In the northern hemisphere, maximum 

recruitment and bloom formation occurs in August, 2-3 weeks after the highest light 

intensity and warmest water temperature (Barbiero 1993; Forsell and Pettersson 1995). 

Late season mixing that occurs during August and into September often precedes G. 

echinulata blooms because it introduces nutrients to the water column, promoting bloom 

formation (Carey et al. 2014a; Yang et al. 2015).  G. echinulata growth and recruitment 

is correlated with lake mixing, as years with weaker stratification have shown increased 

G. echinulata abundance (Pierson et al. 1992; Forsell and Pettersson 1995; Karlsson-

Elfgren et al. 2005). Sediment mixing by physical disturbance exposes akinetes to light, 

which can trigger recruitment and adds to bloom formation (Karlsson-Elfgren et al. 

2004).   
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Figure 2. Life stages of Gloeotrichia echinulata. Nonliving parent colonies (called 
akinetes) overwinter in the sediment. Come spring, the akinetes are recruited from the 
sediment and take up luxury P from the sediment. G. echinulata undergoes cellular 
division during the summer until the blooms senesce in the fall and the cycle starts again.  
 

Gloeotrichia echinulata and Nutrient Cycling 

     Gloeotrichia echinulata, like many species of cyanobacteria, are unique in their ability 

to carry out both oxygen-evolving photosynthesis and oxygen-labile N fixation within the 

same organism (Mitsui et al. 1986). G. echinulata is a heterocystous cyanobacteria 

allowing it to spatially segregate the site of N fixation in the heterocysts from the site of 

photosynthesis in the vegetative cells (Whitton and Potts 2000).  

     Gloeotrichia echinulata can also alter the internal P load of a lake. Before undergoing 

recruitment G. echinulata absorb excess P through luxury uptake, a process in which the 

G. echinulata colony takes in more P than is needed (Forsell 1998). Especially in shallow 
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lakes, luxury uptake of P from cyanobacteria such as G. echinulata, can account for 66% 

of the internal P load (Forsell 1998; Carey et al. 2012; Napiókowska-Krzebietke and 

Hutorowicz 2015). The increased internal P load due to luxury uptake can contribute to 

eutrophication and potentially degrade water quality (Carey et al. 2012).  

     Many cyanobacteria, including Gloeotrichia echinulata, can perform the energy 

intensive process of N fixation, which enables them to access the N from the 

biologically-inert N2 gas (Paerl 1988). The nitrogenase enzyme within G. echinulata 

converts N2 gas into ammonium, which is biologically available. N fixation by G. 

echinulata varies throughout the day, however, it reaches its maximum midday, although 

it is not light dependent (Finke and Seeley 1978; Stewart et al. 1978). N fixing 

cyanobacteria often dominate the phytoplankton community when there is excess P and 

N is limited (Paerl 1988). G. echinulata have a competitive advantage over other 

planktonic organisms because they have access to both P and N (Paerl 1988).  

Nutrient Limitation in Lake Ecosystems 

     There are many elements essential for biological life, but nitrogen (N) and phosphorus 

(P) are arguably the most important in aquatic systems. Historically, researchers believed 

that P was the most important limiting nutrient in all lake systems, and was the main 

driver of eutrophication (Schindler 1974). Recent work by researchers has challenged this 

idea and has created a new model of co-limitation by both N and P (Abell et al. 2010; 

Paerl et al. 2014). When both N and P are present in excess in the correct ratio, biomass 

is not limited by either nutrient. Co-limitation occurs when either nutrient is below the 

required ratio for growth, so the addition of one nutrient or both can increase aquatic 

biomass (Harpole et al. 2011).  

Nitrogen Cycle 

     Nitrogen is the most abundant of the five essential elements for life, yet it is the least 

accessible and can act as a limiting nutrient in aquatic ecosystems (Galloway, 2003). N is 

both an important nutrient for sustaining life and a factor in eutrophication. A N-limited 

system with insufficient N will have decreased productivity on all trophic levels. 

However, an abundance of N in the same ecosystem can cause algal blooms and 

eutrophication, which have negative consequences (Vitousek 1997). Due to fertilizers, 

humans have greatly increased the rate of N inputs to terrestrial ecosystems, which results 
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in N loading in aquatic and marine ecosystems (Vitousek 1997). A well studied and 

dramatic example of N loading due to fertilizers is the Mississippi River delta which 

opens into the Gulf of Mexico (Rabalais et al. 2002). The Mississippi River flows 

through agricultural land that over uses fertilizers and run off carries into the river. This 

excess N results in large algal blooms in the Gulf of Mexico causing a hypoxic zone that 

kills all organisms in the area. The size of the hypoxic zone is determined by the amount 

of N input to the Mississippi from the agricultural land and carried to the Gulf of Mexico 

(Rabalais et al. 2002). This phenomenon is just one example of how excess nutrients 

from anthropogenic sources are detrimental to aquatic ecosystems both near and far.  

      N2 is a non-reactive gas and is not biologically available unless it is transformed to 

ammonium (NH3) via nitrogen fixation. Some bacteria and algae, including many 

cyanobacteria, are capable of N fixation, but the primary source of ammonium comes 

from industrial N fixation (Galloway 2003). The Haber-Bosch process was developed by 

German scientists Fritz Haber and Carl Bosch in the early 1900s to create ammonium for 

use in fertilizers (Galloway 2003). Reactive N can enter aquatic ecosystems through 

agricultural/industrial run-off, groundwater, streams, sewer systems, and atmospheric 

deposition (Holwarth et al. 1996).  

     Other nitrogen cycle processes include nitrification and denitrification. Nitrification is 

a two-step process by which chemolithoautotrophic bacteria that live in the sediment or 

the water column harvest energy from the oxidation of ammonia (Figure 3; Dodds and 

Whiles 2010). Nitrosomas bacteria oxidizes ammonium (NH4
+) to nitrite  

(NO2
-) and then Nitrobacter further oxidizes nitrite to nitrate (NO3

-) (Dodds and Whiles, 

2010). Nitrification is often coupled with denitrification (Figure 3). Denitrification is the 

anoxic process that removes N from the ecosystem in the form of N2 gas (Dodds and 

Whiles 2010). 
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Figure 3. Nitrogen cycle outlined by oxic, the top part of the cycle, and anoxic 
conditions, the lower half of the cycle. (Bruesewitz, pers. comm.) 
 

Phosphorus cycle 

      Phosphorus is almost entirely found in the earth’s crust and within living organisms, 

unlike nutrients such as C and N, which are more abundant in living organisms and less 

in the earth’s crust (Smil 2000; Filippelli 2008; Tiessen 2008) (Figure 4). In natural 

circumstances, P does not have a rapid global cycle because the weathering and erosion 

of rocks are slow (Smil 2000; Bennett et al. 2001; Bouwman et al. 2009). Anthropogenic 

activities such as mining P-rich rock contribute two to three times the natural levels of 

soluble P to aquatic systems (Bouwman et al. 2009). Additionally, anthropogenic P 

loading comes from the use of P in inorganic fertilizers and animal feeds, urban and 

industrial waste, and erosion and runoff from agriculture (Tiessen 1996; Smil 2000; 

Bennett et al. 2001; Bouwman et al. 2009).  

     Terrestrial P is bound up in rocks in the form of phosphates with calcium and 

magnesium (Smil 2000; Tiessen,2008). Due to weathering and leaching of calcium by 

plants, P is released and forms bonds with iron and aluminum in the soil (Smil 2000; 

Tiessen 2008). The iron and aluminum bound phosphates have a lower solubility than the 

calcium phosphates, which limits their diffusion by groundwater through the soil or 
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sediment matrix. The phosphates form tight bonds that prevents them from being 

absorbed by plants (Smil 2000; Tiessen 2008). Due to soil runoff and other mechanisms, 

P can be deposited into aquatic systems where it can contribute to eutrophication 

(Ruttenberg 2003). The increased internal P loading can shift limitation from P to N and 

add to eutrophication (Nürnberg 1994). Due to accumulation of P in aquatic ecosystems 

from anthropogenic sources, eutrophication events have escalated worldwide (Soranno et 

al. 1996).  

 
Figure 4. Diagram of the phosphorus cycle in aquatic systems (Bruesewitz, pers. comm.) 
 

Eutrophication 

     Lake eutrophication, the nutrient enrichment of aquatic ecosystem, happens naturally 

over time from the gradual accumulation of nutrients and normal lake productivity. Lake 

eutrophication proceeds through a series of stages: oligotrophic, mesotrophic, eutrophic, 

and hypereutrophic. At each stage, the level of nutrients, primary production, and plant 

life increases while the water quality decreases (Addy and Green, 1996). The ecological 

impacts of eutrophication are due to the increased algal and macrophyte growth, which 

interferes with recreation, lowers land property values, and degrades drinking water 
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sources (Carpenter et al. 1998). Cultural eutrophication is the process by which natural 

eutrophication is accelerated due to anthropogenic effects that cause excess nutrient 

inputs (Smith et al. 1999). Cultural eutrophication in freshwater lakes is one of the most 

common and most severe global water quality problems facing humanity (Cloern 2001; 

Anderson et al. 2002). Anthropogenic activity such as logging, agriculture, cattle 

husbandry, and urbanization have dramatically increased eutrophication in many aquatic 

systems worldwide (Vitousek 1997).  

     Septic systems are onsite wastewater treatment systems that are popular in the 

Belgrade Lakes and if not functioning properly, can contribute to eutrophication 

(Robertson et al. 1991). These systems are a known cause of wastewater contamination in 

groundwater yet their effect can be underestimated because it can be difficult to assess 

(Yates 1985). Maine has many highly developed lake shorelines that have a high 

concentration of septic systems due to the rural nature of the area. Septic systems can be 

a crucial contributor of nutrients to the lakes, leading to an excess of nutrients and 

summer cyanobacterial blooms. Local governments need to be cognizant of the impacts 

that septic systems can have on the environment, if not inspected frequently and replaced 

when necessary.  

     Many scientists and policy makers focus on efforts to mitigate external P loading to 

control eutrophication (Søndergaard et al. 2003). There is evidence that reductions in 

external P can result in improved water quality with re-established submerged 

macrophyte growth (Cooke et al. 1982; Reitzel et al. 2005). However, internal P loading 

can be just as important when studying the implications of eutrophication. The release of 

P from the lake sediment during seasonal changes in oxygen concentrations due to lake 

turnover can perpetuate symptoms of eutrophication such as algal blooms even after 

external P loading has been minimized (Reitzel et al. 2003). Internal P loading is the 

result of particulate iron phosphate in lake sediments becoming aqueous during anoxic 

conditions (Søndergaard et al. 2003). The increase in biologically available P fuels algal 

growth and cyanobacterial blooms, making internal P loading a critical component of 

eutrophication (Sondergaard et al. 2003). Internal P loading is extremely difficult to 

mitigate, however, solutions such as aluminum application (to bind the mobile P) and 

hypolimnetic oxygenation (to prevent anoxia) have been used successfully in some lakes.  
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     Internal P loading is important to understand in regard to Gloeotrichia echinulata 

because efforts to quell internal P loading could be undermined by the cyanobacterium 

life cycle. High-cost strategies such as hypolimnetic oxygenation and aluminum 

application will only work if the P stays bound and unavailable for a long period of time. 

A consequence of large-scale recruitment of G. echinulata is the translocation of 

significant amounts of P from the sediment to the water column, possibly negating the 

efforts of water quality restoration methods such as alum treatment (Driscoll and 

Schecher 1990). In nitrogen limiting environments, the ability of G. echinulata to fix N 

and sequester luxury P could mitigate the effects of a restoration method.  

 

CHAPTER II: RESEARCH ON THE BELGRADE LAKES 

Research Goals  

     Studying Gloeotrichia echinulata in the Belgrade Lakes is important not only to the 

landowners and stakeholders in the area, but also the wider limnological community. 

Cyanobacterial blooms are generally studied in eutrophic and mesotrophic lakes which 

more commonly experience blooms (Downing 2001); much less is known about its 

dynamics within oligotrophic systems (Barbiero 1993; Jacobsen 1994; Karlsson-Elfgren 

et al. 2003). The Belgrade Lakes include lakes that are oligotrophic and mesotrophic 

systems which have experienced G. echinulata blooms since the land was first settled, as 

shown from the sediment record (Downing 2001; Padisák et al. 2003; Lepisto et al. 

2005). Ongoing research on G. echinulata in the Belgrade Lakes will help scientists 

understand why the abundance is increasing, what health implications it could have, and 

how G. echinulata affects the N and P cycling in these lakes.  

Methods 

Study Area  

     The Belgrade Lakes watershed includes seven large lakes that are at risk for degrading 

water quality (Diagle 2015). The decreasing water quality in the Belgrades is likely due 

to mixture of influences, including urban development, aging sewer systems, and ground 

run off. The Belgrade Lakes have highly developed shorelines with a high concentration 

of aging septic systems. Septic systems could be a crucial contributor of nutrients to these 

lakes, leading to an excess of nutrients and summer cyanobacterial blooms. 
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     The Belgrade Lakes are an ideal study site for Gloeotrichia echinulata because the 

bloom intensity has increased in the recent past and it could be a marker of human 

influence and climate change. Water samples from over the past 40 years indicate 

increased levels of nutrients to be the leading cause of the decline in water quality 

(McGuire 2015). The two study lakes are geographically adjacent to each other, but each 

has a unique trophic state. Great Pond is mesotrophic and Long Pond is oligotrophic; this 

allows for an interesting comparison of G. echinulata population dynamics in lakes 

subject to the same meteorological forces but different nutrient states.  

      Local lake associations, stakeholders, and community members are involved in the 

process of protecting the Belgrade Lakes from eutrophication. Many local residents are 

enrolled in the LakeSmart Program based in Belgrade Lakes Village that promotes 

construction and retention of healthy riparian buffers between shoreline development and 

the lake (Diagle 2015). In 2015, the Belgrade Lakes Association granted 22 homes the 

LakeSmart certification and 36 homes were awarded a LakeSmart commendation (Diagle 

2015). Enrollment in these programs and interest in lake health makes the Belgrade Lakes 

a socially and environmentally important ecosystem to study.  

Study Sites  

     The sites chosen for sampling Gloeotrichia echinulata and water quality comprise a 

mix of shallow and deep areas in Long Pond and Great Pond (Figure 5). G. echinulata 

abundance differs based on spatial and temporal lake variations. There should be 

consistency in G. echinulata density in deep sites because pelagic conditions are similar 

within the same lake. Shallow sites are likely susceptible to different weather, land 

inputs, geological formations, and wind patterns, which will distribute the G. echinulata 

and cause a larger variation in density among sites. The deep sites and shallow sites were 

chosen to investigate how G. echinulata density is affected by these conditions.  

     The Maine Department of Environmental Protection monitors these lakes at specific 

sites, typically in the deepest part of each lake, so we adopted those points in our study 

sites as well. The sites are accessed by public land with the exception of one private 

property.  
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Table 1. Descriptions for the 10 sampling sites on Long Pond and Great Pond. 

Site ID Description Depth (m) 

LP1 Belgrade Village: A 2m dock extends into a small artificial bay 
created to harbor boats. The shoreline consists of commercial 
buildings, gravel parking lots, a grass lawn, and stone boulders. 

2.0 - 3.0 

LP2 Resident’s Dock: A 2m dock extends into a shallow, secluded cove 
on the east side of the north basin. Residences in this area are 
primarily year-round and a busy road runs close to the lake shore. 
Resident has a LakeSmart certified property. 

2.0 - 3.0 

LP3 North Basin: Maine Department of Environmental Protection (DEP) 
survey site. The north basin shoreline has more year-round and 
seasonal residences than the south basin. Downtown Belgrade also 
borders the shoreline of the north basin. 

40 

LP4 South Basin: Maine DEP survey site surrounded by minimal 
residences. 

40 

LP5 Public Boat Launch: A 4m dock extends into a shallow bay with a 
shoreline of natural vegetation to the east and west and a road to the 
north. A portable toilet is on site. 

1.5 - 2.5 

GP1 Great Pond Public Boat Launch: A 5m dock extends into a shallow, 
marsh like habitat. Due to boat traffic in the shallow water, the 
sediment is continually altered. The shoreline consists of the Great 
Pond Marina and the parking lot for the Boat Launch. Portable toilets 
are on site.   

1.5 - 2.5 

GP2 Goldie Buoy: The Colby owned buoy measures water and light 
characteristics throughout the water column. The eastern shoreline 
has seasonal residences and the western shoreline has a mix of 
seasonal and year-round residences. 

62 

GP3 North Bay: Sampling occurred in the center of the north bay which 
had previously restricted access due to a milfoil removal effort by the 
lake associations and because it is a sensitive nesting area for birds. 
The shoreline is almost completely natural vegetation with a few 
residences on the southern shore. Past summers have experienced 
high G. echinulata blooms in this bay. 

8.0 - 9.0 

GP4 Center of the lake: Maine DEP survey site, minimal residences on the 
shoreline. 

40 

GP5 Colby Outing Club Cabin: A 4m dock extends into a shallow, rocky 
bay on the SE side of Great Pond. Seasonal and year-round houses 
line the lake shore. 

1.0 - 1.5 
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Figure 5. GIS map showing the 10 sampling sites on Long Pond and Great Pond in 
Belgrade, ME, labeled by site ID. The spatial and temporal distribution of Gloeotrichia 
echinulata peak blooms during summer 2014 measured in colonies L-1 is noted along 
with the date of collection. 
 

Sampling Methods 

     To sample Gloeotrichia echinulata sampling methods of previous studies were used in 

order to promote consistency between regional datasets (Carey et al. 2008, 2012). 

Sampling occurred bi-weekly among June and September 2015 to track lake 

characteristics and G. echinulata blooms over the course of the summer. Water data were 

collected using an In-Situ Inc. SmarTroll Probe to measure temperature, pH, and percent 

dissolved oxygen (DO) at each site at a depth profile of 0 m, 0.5 m, 1 m, 2 m, 5 m, 10 m. 
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Corresponding weather data were measured using a weather station at the Maine Lakes 

Resource Center in Belgrade, Maine. Water collection was taken at 1 m using a Van 

Dorn 4L water sampler (Wildlife Supply Company, Wildco). G. echinulata colonies were 

collected using a zooplankton net of dimensions 30 cm x 90 cm, and made of 250 micron 

mesh (Dynamic Aqua-Supply Ltd.). Two tows were taken at 1 m depth at each site and 

G. echinulata colonies were preserved with 2-5 mL of Lugol’s Iodine solution in 250mL 

amber nalgene bottles and stored upright at room temperature. 

Gloeotrichia echinulata counting 

     Hand-counting of Gloeotrichia echinulata was conducted by five student research 

assistants at Colby College using an identical protocol for G. echinulata from the summer 

of 2014 and 2015. Each sample was filtered from storage bottles using a 10 µm mesh 

screen. Once filtered, the storage bottle was rinsed several times to obtain all possible G. 

echinulata colonies. The sample was then deposited onto a grid-marked square petri dish. 

Using a dissecting microscope, each sample was analyzed for full G. echinulata bodies, 

“haircut” G. echinulata bodies, G. echinulata bodies that were less than half, G. 

echinulata bodies that were more than half, and filamentous bundles (Figure 6). 

 
Figure 6. Magnified picture of water sample from Long Pond with full Gloeotrichia 
echinulata body circled.  
 

     In order to expedite obtaining accurate counts of Gloeotrichia echinulata in samples, 

we explored the possibility of utilizing a FlowCam, an automated plankton detection 

instrument, to count the samples. We thought that the FlowCam could provide accurate 
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counts of G. echinulata from lake samples by passing samples through the flow cell and 

programing the software to identify the G.echinulata bodies. We tried many different 

flow cell sizes and arrangements of tubing, but the FlowCam was never as successful at 

getting exact counts as the research assistants were. This method was unsuccessful in 

counting the G. echinulata because the flow cell needed to accommodate the size of the 

G. echinulata colonies, which are so large that the accuracy of the FlowCam decreased as 

it was only able to capture a portion of the flow cell window. When the flow cell size was 

decreased to improve accuracy the G. echinulata colonies formed a blockage in the 

tubing before entering the flow cell. An accurate and complete count was necessary for 

this project, so that differences in G. echinulata densities between days and sites could be 

calculated, especially when the densities were low. If a flow cell could be found that was 

large enough for the G. echinulata colonies to pass that still provided high accuracy, there 

is potential that the FlowCam could be a useful tool in monitoring G. echinulata density 

on a larger scale. We determined after several trials that hand-counting remains the most 

efficient and accurate way to monitor the density of G.echinulata. 

 Lake Phosphorus Concentrations 

     To measure total phosphorus (TP) concentrations throughout the summer, water 

samples were taken weekly at G.echinulata sampling sites in Long Pond and Great Pond. 

Water samples were measured for TP using QuikChem 8500 Series 2 Lachat FIA System 

after persulfate digestion of the unfiltered water samples using standard methods (10-

115-01-1-Q). Samples were prepared by adding 0.05 mL of digestion solution (equal 

parts ammonium persulfate and sulfuric acid solution) and 9.5 mL of water sample to a 

test tube, and then digested at high temperatures for 30 minutes in a Market Forge 

Sterilmatic autoclave. Each site had three replicates for each sample date. Stata 13.1 

software was used to determine if there is a significant correlation between G. echinulata 

blooms and nutrient levels. 

Phosphorus in Gloeotrichia echinulata Bodies 

     To measure TP of individual Gloeotrichia echinulata bodies, full G. echinulata bodies 

were separated by pipette from lake samples preserved in Lugol’s solution. G. echinulata 

bodies were selected from both on Long Pond and Great Pond. For samples containing 10 

bodies, G. echinulata were taken from site LP5 on the 25th of June 2015. For samples 
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containing 5 bodies, the G. echinulata were taken from GP4 on the 29th of the June 2015. 

These dates and sites were chosen to get a random sampling of G. echinulata.  For each 

trial, varying amounts of G. echinulata bodies (n=5, n=10) were placed in test tubes with 

0.5 mL of digestion solution (equal parts ammonium persulfate and sulfuric acid 

solution) and 9.5 mL of deionized water. These samples were digested at high 

temperature and pressure for 30 minutes in a Market Forge Sterilmatic autoclave. After 

digestion, samples were analyzed for orthophosphate as described above. The results 

were analyzed using a linear regression to determine if there is a direct relationship 

between number of G. echinulata bodies and P levels and to estimate an approximate P 

concentration per colony. 

Chlorophyll-a and Pheophytin Concentrations 

     At each sampling site, 1000 mL of water was collected at a depth of 1m with the Van 

Dorn water sampler. The 1000 mL were filtered through a GF/F 0.7 µm mesh filter. The 

filters were stored frozen for 1-3 weeks before being analyzed. Once ready to be 

analyzed, the filters were defrosted and soaked in 15 mL of 90% acetone for 48 hours in a 

dark refrigerator. Then the extracted samples were run on a Turner Designs Trilogy 

Fluorometer and absorbance before and after acidification was measured to determine 

chlorophyll-a and pheophytin, a pigment used by cyanobacteria for photosynthesis. 

Isotopic nitrogen experiment analysis 

     Nitrogen occurs in two stable isotopic forms, 14N and 15N (Lake et al. 2011), and 

99.6% of all naturally occurring nitrogen is 14N (Kim et al. 2016). A novel method of 

measuring isotopic nitrogen was developed by the Colby College Chemistry department 

in collaboration with the Environmental Studies Program. 15N stable isotope tracer 

studies are a crucial tool to understand the N cycling mechanisms and rates in aquatic 

ecosystems (Kim et al. 2016). However, the traditional method is less efficient, less 

accessible, and requires a far greater volume of water sample than the newly developed 

method using indophenol (Kim et al. 2016).  

     The novel method uses an electrospray ionization time-of-flight mass spectrometry to 

measure nitrogen isotope ratios in the samples. Two phenol molecules trap the nitrogen 

species, which forms indophenol, a heavier and less reactive compound (Figure 7). 

Excess reagents are removed from the sample using a C-18 solid phase extraction with 
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acetonitrile, which concentrates the indophenol four-fold (Kim et al. 2016). From the 

mass spectrometry spectra, we can measure the isotopic ratios easily and accurately 

(Figure 8). 

 
Figure 7. Reaction mechanism for the novel method of measuring isotopic nitrogen ratios 
in water samples.  

 
Figure 8. Example of electrospray ionization time-of-flight mass spectrometry for the 
novel method. The horizontal axis is mass in grams divided by charge. Isotopic 14N 
indophenol has a peak at 198.056 g and 15N indophenol has a peak at 199.053 g.  
 

     There have been setbacks within the time frame of this thesis that have prevented me 

from analyzing all 1,000+ samples from the isotopic nitrogen experiment. In the future, 
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these data will provide information on the assimilation and demineralization of organic 

nitrogen by a phytoplankton community composed primarily of G. echinulata.  

Isotopic Nitrogen Uptake Experiments 

     To measure nitrogen uptake of the plankton community throughout the summer, we 

conducted controlled ammonium (NH4
+) uptake experiments in the laboratory at Colby 

College, Waterville, ME. One liter of water was collected using the Van Dorn water 

sampler at depth of 1 m and stored in opaque white 1 L nalgene bottles on ice. The water 

was collected at a subset of six sites that were chosen because they experienced high 

Gloeotrichia echinulata abundance in the past and provided information on both shallow 

and deep sites. The three sites used for Great Pond were the Public Boat Launch (GP1), 

Goldie Buoy (GP2), and the north cove (GP3). For Long Pond, the three sites were the 

Belgrade Village dock (LP1), the north basin (LP3), and the south basin (LP4).  

     Upon returning to the lab from sampling, 180 mL of water was put into six narrow-

necked clear glass beakers for each site (Figure 9). 150 µL of 15N was added to the three 

experiment beakers and the three control beakers were unchanged. 60 mL of water was 

sampled from each beaker at time 0, 4 hours, and 24 hours to measure uptake of the 
15NH4

+ over time by plankton at room temperature. The interval samples were stored in 

vials and kept frozen in a dark space until analysis occurred. 

 
Figure 9. Experimental design of beakers for the isotopic nitrogen uptake experiment for 
Long Pond. The Great Pond experiment was set up identically. Samples were measured 
at 0, 4, and 24 hours.  
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CHAPTER III: RESULTS, DISCUSSION, AND CONCLUSION 

Lake characteristics 

     The air temperature at Belgrade Lakes Village, ME increased from the beginning of 

June to the end of August, with the peak temperature occurring in mid-August (Figure 

10). The highest recorded air temperature in Belgrade Lakes Village was 32° C on 18 

August 2015. Water temperatures in Great and Long Pond follow the same general 

seasonal pattern, with peak surface water temperatures of 25.69° C and 26.59° C 

occurring on 29 July 2015 and 3 August 2015, respectively. The water temperature was 

measured at different frequencies throughout the water column depending on site depth. 

Here, I focus on water temperature at 0.5 m depth because Gloeotrichia echinulata 

blooms occur in the top 1 m of the water column (Figure 11). The mean water 

temperature for Long Pond from June to August 2015 was 22.28 ± 0.33° C. For Great 

Pond, the mean water temperature from June to August 2015 was 21.88 ± 0.38° C. There 

was not a significant difference in water temperature between Long Pond and Great Pond 

(t-test, p>0.05; LP n=50, GP n=39).  

 
Figure 10. Mean daily air temperatures in Belgrade Lakes Village, Maine, for July and 
August 2015. Temperatures provided by National Weather Service sampled at 44.53°N 
69.86°W.  
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Figure 11. Average water temperature (±SE; °C) in Long Pond and Great Pond at 0.5 m 
depth from June to August 2015.  
 
     We measured DO at many depths, but Figure 12 only displays 0.5 m depth because of 

its primary relevance for G. echinulata. Great Pond had a mean dissolved oxygen of 8.86 

± 0.07 mg L-1 from June to August, 2015. Similarly, mean dissolved oxygen in Long 

Pond from June to August, 2015 was 8.99 ± 0.07 mg L-1. As expected due to their 

proximity to each other, there was not a significant difference in DO between Long Pond 

and Great Pond, and both are saturated with oxygen at this depth (t-test, p>0.05; GP 

n=27, LP n=34).  
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Figure 12. Mean dissolved oxygen (±SE) (mg L-1) in Long Pond (hollow circles) and 
Great Pond (full circles) from June to August 2015.  
 

     Long Pond and Great Pond had similar pH values throughout the summer (Figure 13). 

The mean pH value for Long Pond from June to August 2015 was 7.36 ± 0.08. Great 

Pond had a mean pH value from June to August 2015 of 7.39 ± 0.04 The mean pH values 

from June to August 2015 were not statistically significantly different between Long 

Pond and Great Pond, and both were in a neutral range (t-test, p>0.05; GP n=27, LP 

n=34).  

 The total rainfall for Belgrade Lakes Village was lower in 2014 than 2015 (Figure 

14). Rainfall and strong wind can mix layers within a lake, which results in reduced 

thermal stability of the water layers within the lakes (Figure 15).  
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Figure 13. Mean pH values (±SE) for Great Pond (dark circles) and Long Pond (hollow 
circles) for the summer of 2015.  
 

 
Figure 14. (a) Total daily rainfall in Belgrade Lakes Village for the summers of 2013, 
2014, and 2015 measured in mm. (b) Total Rainfall during the study period over the 
summers of 2013, 2014 and 2015.  
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Figure 15. Schmidt stability (thermal stability) (J m3) for Great Pond for the summers of 
2014 (a), 2014 (b), and 2015 (c). 
 
Gloeotrichia echinulata Density 

     The Gloeotrichia echinulata densities throughout the summer of 2015 highlight 

differences in temporal and spatial distribution across Long Pond and Great Pond. The 

trend for 2015 blooms mirrored that from 2014 in both lakes with peak blooms of up to 

39.4 colonies L-1 in Long Pond on July 17, 2015 at LP1 and 15.1 colonies L-1 in Great 

Pond on July 22, 2015 at GP3. For all sites across both lakes the density diminished to 0 

colonies L-1 by September 1st in both 2014 and 2015.  

     There is variation in density both between Long Pond and Great Pond and within each 

lake individually (Figure 16, Figure 17). However when averaged across all sites, Great 

Pond and Long Pond did not have significantly larger blooms in 2014 (paired t-test, 

p>0.05, n=10; data not shown). Likewise, the densities for the lakes as a whole were not 

significantly different for the summer of 2015 (paired t-test, p>0.05, n=10). Additionally, 

the densities of Long Pond in 2014 were not significantly different from the densities in 

2015 (paired t-test, p>0.05). For Great Pond the same is true, the densities in 2014 and 

2015 were not significantly different (paired t-test, p>0.05). This is because of the large 

variability in Gloeotrichia echinulata density across the different sites within each lake. 

However, the means alone show that the magnitude of the densities is lower in 2015 than 

the summer prior (Table 2).  
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Table 2. Mean Gloeotrichia echinulata densities across both lakes for 2014 and 2015.  

Lake 2014 density 2015 density 

Long Pond 4.62±1.48 colonies L-1; n=37 

 

3.97±0.45 colonies L-1; n=78 

Great Pond 2.31±0.62 colonies L-1; n=34 1.22±0.23 colonies L-1; n=67 

 

     Overall, the peak blooms occur in late July and early August in both lakes, with higher 

bloom densities in Long Pond than Great Pond. In Great Pond, Gloeotrichia echinulata 

density was not significantly different across the five sites in 2014 (one-way ANOVA 

(F(4, 29) = 19.6, p > 0.05)) (Table 3). Likewise, there was not a significant difference 

among sites for 2014 in Long Pond (one-way ANOVA (F(4, 32) = 1.15, p > 0.05). 

However, because the densities vary over time, a repeated measures ANOVA is more 

appropriate because it partitions our variation due to sampling the same sites through 

time. When tested with a repeated measures ANOVA, Long Pond was significantly 

different across sampling sites for 2014 (F(9, 23) = 4, p = 0.0035) with LP1 site having 

more G. echinulata, whereas Great Pond was not different across sites. 

 

Table 3. F and p value table for Great Pond and Long Pond from one-way ANOVA 
comparing densities from 2014.  
Lake/Site 1  2 3 4 5 F value P value 

Great 

Pond 

n=10 n=5 n=4 n=5 n=10 4,29 >0.05 

Long 

Pond 

n=8 n=9 n=5 n=5 n=10 4,32 >0.05 

 



 29  

 

 
Figure 16. Gloeotrichia echinulata density in the surface water of Great Pond (A) and 
Long Pond (B) from June to October 2015 at five sites on each lake. Density is measured 
in colonies per liter of water averaged across two plankton net tows at each site. 
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Figure 17. Lakewide means (±SE) of Gloeotrichia echinulata density across the five sites 
for Long Pond (dark circles) and Great Pond (hollow circles) from June to October 2015.  
 

Gloeotrichia echinulata Density Across Lake Depths 

     In both Great Pond and Long Pond, the densities between shallow, littoral and deep, 

pelagic sites are not significantly different (Table 4, Figure 18) (t-test, p>0.05). The 

difference between the deep sites of Long Pond and Great Pond trends toward being 

significantly different (t-test, p= 0.11). Likewise, there is a trend toward a significant 

difference between the shallow sites of Long Pond and Great Pond (t-test, p=0.13), with 

Long Pond shallow sites having more G. echinulata than Great Pond shallow sites.  

 

Table 4. Mean Gloeotrichia echinulata density (± SE) at shallow sites (LP 1,2,5; GP 
1,3,5) and deep sites (LP 3,4; GP 2,4) from June-October, 2015.  

Lake Shallow Sites Deep Sites  

Long Pond 3.53 ± 2.04 (n=45) 4.58 ± 3.24 (n=32) 

Great Pond 1.354 ± 0.65 (n=33) 1.19 ± 0.98 (n=24) 
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Figure 18. (A) Average (±SE) Gloeotrichia echinulata density at shallow sites (LP: 1, 2, 
5; GP: 1, 3 5) for Long Pond (dark circles) and Great Pond (hollow circles) from June to 
October 2015. (B) Average (±SE) G. echinulata density at deep sites (LP: 3, 4; GP: 2, 4) 
for Long Pond and Great Pond from June to October 2015.  
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Total Phosphorus  

     The total phosphorus (TP) in Great Pond and Long Pond during the summer of 2015 

showed large variability. Great Pond had significantly higher TP levels at deep sites than 

shallow sites (Table 5). Additionally, the five sites on Great Pond had significantly 

different TP levels over time (MANOVA, F(4, 11) = 9.38, p<0.05; GP1 (n=33), GP2 

(n=39), GP3 (n=42), GP4 (n=42), GP5 (n=39)) (Figure 19). Long Pond, however, did not 

have a statistically significant difference between the deep sites and shallow sites (Table 

5). Also, when compared to each other over time, the sites on Long Pond were not 

significantly different from each other (MANOVA, F(4, 12) = 1.88, p>0.05; LP1 (n=1), 

LP2 (n=35), LP3 (n=35), LP4 (n=37), LP5 (n=36)) (Figure 19). Across both lakes, the TP 

concentrations averaged across the five sites for each date are not significantly different 

between lakes (t-test, p>0.05, n=12; Figure 20).  

     We estimate that Gloeotrichia echinulata bodies on average contain 0.883 ± 0.079 µg 

P L-1 per G. echinulata body (n=50) (Figure 21). See discussion for information on 

scaling P in G. echinulata bodies to lake TP dynamics.  

 

Table 5. Statistical analysis of difference between total phosphorus between deep and 
shallow sites within each lake.  

Lake Deep Sites Shallow Sites P-value 

Long Pond Sites 3, 4 

n=72 

Sites 1, 2, 5 

n=107 

T-test, p>0.05 

Great Pond Sites 2, 4 

n=65 

Sites 1, 3, 5 

n=95 

T-test, p=0.023 

 

 



 33  

 

 
Figure 19. Total phosphorus concentrations (±SE) for Long Pond (top graph) and Great 
Pond (bottom graph) from June to August 2015.  
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Figure 20. Total phosphorus concentrations averaged (±SE) across the five sites for each 
lake from June to August, 2015.  

 
Figure 21. Mean (±SE) total phosphorus concentrations for five and ten Gloeotrichia 
echinulata bodies (n=6).  
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Chlorophyll-a Concentrations 

     The mean chlorophyll-a concentrations for Long Pond and Great Pond (Table 6) for 

the summer of 2015 reflect the trends of 2014 (data not shown). There is not a significant 

difference in chlorophyll-a concentration among the two lakes when comparing all sites 

(t-test, p>0.05) (Figure 22, Figure 23). Within Long Pond, there is not a significant 

difference between the sites as determined by a one-way ANOVA (Table 7). Likewise, 

Great Pond does not have a significant difference between the sites by a one-way 

ANOVA (Table 7). However, when the sites within a lake are measured across time, both 

Long Pond and Great Pond show significant differences in chlorophyll-a concentrations 

when using a repeated measures ANOVA (Table 7).  

 

Table 6. Mean chlorophyll-a concentrations (µg L-1) from Long Pond and Great Pond for 
the summer of 2015; minimum and maximum chlorophyll-a (µg L-1) with date and site 
attained. Refer to map for site locations (Figure 5).  

Lake Mean chlorophyll-a 

(µg L-1) 

Minimum chlorophyll-a 

(µg L-1) and date 

Maximum chlorophyll-a 

(µg L-1) and date 

Long Pond 2.273 0.95     6/17/15       LP2 4.91      7/21/15      LP4 

Great Pond 2.448 1.34      9/25/15      GP5 7.18      7/21/15      GP4 

 

Table 7. Statistical values for ANOVA and repeated measures tests for Long Pond and 
Great Pond chlorophyll-a. 

Lake F and P values one way 

ANOVA 

F and p values repeated 

measures  

Long Pond F(4, 60) = 0.47, p>0.05 

n=13 for all sites  

F(12, 48) = 19.05, p<0.001 

n=13 for all sites 

Great Pond F(4, 60) = 1.23, p=>0.05 

n=13 for all sites 

F(12, 48) = 5.9, p<0.001 

n=13 for all sites 
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Figure 22. Chlorophyll-a concentrations (µg L-1) for Great Pond (A) and Long Pond (B) 
measured across the five sites at each flake from May to October 2015. Refer to map for 
site locations (Figure 5).   
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Figure 23. Chlorophyll-a concentration (µg L-1) averaged (±SE) for the five sites across 
Great Pond (dark circles) and Long Pond (grey circles) from May to October 2015. Refer 
to map for site locations (Figure 5). 
 
Pheophytin Concentrations 

     The mean pheophytin concentrations for Great Pond and Long Pond (Table 8) for the 

summer of 2015 are not statistically different (t-test, p>0.05) (Figure 24, Figure 25). For 

both Long Pond and Great Pond, none of the sites within each lake are statistically 

different from other sites within the same lake (one-way ANOVA; Table 9). Long Pond’s 

northern sites (LP2, LP3, and LP4) had greater Gloeotrichia echinulata blooms than the 

southern site (LP1, LP5; RM-ANOVA; Table 9). Great Pond had greater G. echinulata 

density in the northern cove, GP3, than the other sites (RM-ANOVA; Table 9).  

 

 

 

 

 

 

 



 38  

 

Table 8. Mean pheophytin concentrations (µg L-1) from Long Pond and Great Pond for 
the summer of 2015; minimum and maximum pheophytin (µg L-1) with date and site 
attained. Refer to map for site locations (Figure 5) 

Lake Mean pheophytin  

(µg L-1) 

Minimum pheophytin 

(µg L-1) 

Maximum pheophytin (µg 

L-1) 

Long Pond 1.613 0.22 7/7/15 LP2 4.09 6/17/15 LP2 

Great Pond 1.656 0.06 9/15/15 GP3 3.32  7/27/15 GP2 

 
 
Table 9. Statistical values for ANOVA and repeated measures tests for Long Pond and 
Great Pond pheophytin concentrations.  
Lake F and P values one way 

ANOVA 

F and p values repeated 

measures  

Long Pond F(4,62)=0.47, p>0.05 

LP1 (n=13); LP2 (n=12); LP3 

(n=14); LP4 (n=14); LP5 

(n=14) 

F(15,47)=4.24, p<0.001 

LP1 (n=13); LP2 (n=12); LP3 

(n=14); LP4 (n=14); LP5 

(n=14) 

Great Pond F(4,60)=0.89, p=>0.05 

n=13 for all sites 

F(12,48)=5.02, p<0.001 

n=13 for all sites 
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Figure 24. Pheophytin concentrations (µg L-1) for Great Pond (A) and Long Pond (B) for 
the five sites at each lake from May to October 2015. Refer to map for site locations 
(Figure 5) 
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Figure 25. Pheophytin concentrations (µg L-1) averaged (±SE) across the five sites for 
each lake from May to October 2015. Refer to map for site locations (Figure 5). 
 

Discussion 

Lake Characteristics 

     As the air temperature in Belgrade Lakes Village increased over the summer of 2015, 

the lake water temperature in Long Pond and Great Pond increased as well. Both Long 

Pond and Great Pond are at the same latitude, 44.4467° N, 69.8321° W, and elevation, 76 

m above sea level. One of the biggest differences between the bodies of water is their 

topology. Long Pond has a surface area of 10.3 km2, whereas Great Pond has a much 

larger surface area of 34.5 km2 (VLMP, 2016). Additionally, Long Pond is deeper with a 

mean depth of 10.6 m and a max depth of 32.3 m (VLMP, 2016). Great Pond is shallower 

with a mean depth of 6.4 m and a max depth of 21.0 m (VLMP, 2016).  The lakes 

experience the same weather and are part of the same watershed with Great Pond flowing 

into Long Pond, however, the level of lakeshore development differs, with Great Pond 

being more heavily developed. 

     As the summer progresses, the air and water temperatures increase, which have effects 

on lake biology and chemistry. Gases are less soluble in warm water;  dissolved oxygen 



 41  

(DO) levels decrease throughout the summer as the water temperature increases (Aben 

2005). In both Long Pond and Great Pond, DO at the surface decreased slightly 

throughout the summer due to decrease gas solubility in the warmer water, despite gross 

primary production at the surface providing oxygen. For both lakes at the hypolimnion at 

10 m, DO concentration declined throughout the summer due to the decay of 

phytoplankton (Beutel 2003). An anoxic hypolimnion can cause shifts in nutrients in the 

sediment along with zones of hypoxia that are dangerous for fish health (Beutel, 2003). 

Management practices such as oxygen bubbling throughout the summer can be used to 

prevent anoxia in the hypolimnion (Beutel 2003), but the high cost is prohibitive in many 

cases.  

     Throughout the summer of 2015, the pH increased in both Long Pond and Great Pond, 

similar to trends have been found in other aquatic systems (Okogwu and Ugwumba 

2009). Along with reduced dissolved oxygen, an increase pH is associated with 

cyanobacteria abundance (Okogwu and Ugwumba 2009). Summer cyanobacterial blooms 

near the Chesapeake Bay have caused an elevated the pH of between 9 and 10 (Gao et al. 

2012).  An elevated pH promotes desorption of sedimentary inorganic phosphorus and 

facilitated conversion of ammonium (NH4
+) to ammonia (NH3) (Gao et al. 2012). An 

elevated pH will aid in increasing cyanobacterial abundance by introducing more 

biologically available nutrients into the water column. Although we do not have measures 

of pH near the sediment surface where these processes occur, we anticipate that the 

trends measured in the surface water would follow in the hypolimnion of both Great Pond 

and Long Pond.  

Gloeotrichia echinulata Densities 

     Lake Sunapee in New Hampshire experiences Gloeotrichia echinulata peak blooms in 

late August (Carey et al. 2008, 2014a), several weeks after peak blooms were observed in 

the Great Pond and Long Pond. Carey et al. (2014a) suggested lake wide cues such as 

lake mixing, thermocline depth, Schmidt stability, and minimum air temperatures as 

important factors in determining bloom dynamics.  

     Although no significant difference among densities was observed across sites, trends 

indicate that Gloeotrichia echinulata densities were highest at sites in protected coves 

(GP3) and in shallow areas (GP1, GP5, LP1, LP2, LP5; Figure 17). In Long Pond, the 
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shallow sites had a lower mean density for the summer than the deep sites. We would 

expect to see the opposite trend, because Long Pond is a deeper lake with less surface 

area and two elongated basins. Patterns of wind direction, which is predominantly from 

South to North, could shift the G. echinulata from the open water to accumulate in coves 

and shallow areas. This movement is most likely occurring in both lakes, but due to Long 

Pond being oligotrophic, it produces a higher bloom in general, which compensates for 

the clustering caused by the wind. Great Pond had a higher mean density of G. echinulata 

at the deep sites than the shallow sites. The shape of the lake could help explain these 

effects; Great Pond has more surface area so the wind does not have as strong an effect 

on collecting G. echinulata into coves as in Long Pond. Higher G. echinulata densities in 

shallow areas were also found Lake Erken, Sweden (Forsell and Pettersson 1995; 

Karlsson-Elfgren et al. 2003) and Lake Sunapee, NH (Carey et al. 2008, 2014a). This 

effect was attributed to wind redistribution of G. echinulata as well as higher recruitment 

rates from shallow sediments (Carey et al. 2014a).  

     There appear to be regional climatic clues such as lake mixing, which trigger similar 

blooms in Great Pond and Long Pond (Carey et al. 2014). This provides an explanation 

for the similar peak bloom date across all sites. In addition, variations in timing and 

bloom magnitude may have been influenced by local in-lake factors such as depth 

(Karlsson-Elfgren et al. 2004), sediment chemistry and substrate type (Carey et al. 2008, 

2009), dissolved O2 (Barbiero 1993), size of the akinete bank (Forsell 1998), bioturbation 

(Pierson et al. 1992; Karlsson-Elfgren et al. 2004), and grazing (Rengefors et al. 1998). 

Future research that includes measurement of G. echinulata recruitment from the 

sediment along with monitoring these variables would further identify which of these 

factors are drivers in the Belgrade Lakes. 

     The mean Gloeotrichia echinulata densities appear to be lower in 2015 than in 2014, 

however, this could be a product of the time frame for sampling between years. 

Monitoring in the summer of 2014 began in mid-July so there were fewer overall samples 

taken, whereas monitoring in 2015 began in June. Since 2015 included more samples 

outside of the bloom periods, the overall mean will be lower. We suspect that there was 

not a significant decrease in G. echinulata densities from 2014 to 2015. However, 

differences in weather patterns between the two years could have altered lake stability or 
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otherwise altered lake conditions to account for differences between years of sampling. 

G. echinulata grows best in stable, warm, oligotrophic lakes. The summer of 2015 had 

was more total rainfall and more rainfall in the late summer, which disrupted Schmidt 

stability and could have limited G. echinulata blooms.  

Counting Strategies 

     Routine monitoring is one of the best ways to measure Gloeotrichia echinulata 

blooms in lake systems. Weekly sampling, while labor-intensive, provides a quantitative 

and continuous data set of G. echinulata densities throughout the summer, which can be 

patchy, with blooms occurring on the scale of a few days and then subsiding. Some lake 

associations, such as the Belgrade Lakes Association, have established citizen science 

monitoring systems that engage local residents and stakeholders in water quality issues. 

These programs have been successful at increasing awareness about lake health and for 

gathering widespread data across lakes. One of the drawbacks of citizen science 

monitoring is that it offers a less precise count of G. echinulata density, and decreases 

consistency across sites and lakes with observations from many different people, at 

different times of the day. In all, weekly sampling combined with citizen science 

monitoring provide useful tools for establishing long term data sets for measuring lake 

health.  

     Once the samples have been collected, the Gloeotrichia echinulata are stored in iodine 

solution to preserve the colonies. Then each sample is carefully counted under a 

dissecting microscope. This process introduces error because there is variation among the 

assistants’ perception of what constitutes a colony. G. echinulata densities are better 

considered estimations of bloom densities than absolute counts. We minimize this 

variation by having a small number of trained G. echinulata counters in the lab, to 

decrease variation from individual person counts.  

     Another strategy considered for counting Gloeotrichia echinulata is using a flow 

cytometry instrument, or FlowCam to take pictures of each colony in a sample of water. 

The pictures can be identified and then the density can be extrapolated from the count. 

However, G. echinulata colonies are large organisms with varying shapes. This provided 

a challenge for both taking pictures of the colonies and then using the computer program 

to identify them. The large colonies clogged the tubing of the FlowCam, but the accuracy 
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of the count decreased when we used a bigger flow cell because the camera cannot 

capture the entire depth of the flow cell.  The amount of error that this procedure 

introduced to counting indicated that the FlowCam would need to be modified to achieve 

accurate estimations.  

Total Phosphorus  

The TP levels did not significantly differ across Long Pond and Great Pond 

because of the variability within the sites for each lake. Anthropogenic influences, such 

as runoff from lawns or roads, and longer water residence time result in significantly 

higher TP in the shallow sites than in the deep sites for Great Pond. Long Pond also had 

higher TP in the shallow sites, however, the trend is not significantly different. Higher TP 

due to anthropogenic effects such as septic system leakage is possible for Belgrade Lakes 

Village and Great Pond Public Boat Launch. Additionally, runoff from the road and 

development within Belgrade Lakes Village and sediment suspension by boat motors can 

contribute to the higher TP at those sites. The lowest TP during the peak bloom (7.17 ± 

0.15 µg P L-1 occurred at a LakeSmart certified property on Long Pond. The LakeSmart 

certification entails that the property has a riparian buffer along the shoreline to protect 

against excess nutrients entering the lake from runoff. LakeSmart is a valuable and 

successful program in the Belgrade Lakes for protecting lake health (Junker 2016).  

Throughout the summer of 2015, the TP levels fluctuated possibly correlating to 

Gloeotrichia echinulata density changes. The TP levels were lowest during June and 

subsequently increased throughout the summer, peaking in both lakes in early August. 

Variations in G. echinulata distribution could be reflected in the TP measurements as G. 

echinulata typically have the highest recruitment rates at shallow sites (Carey et al. 

2008). Along with anthropogenic effects, we suspect that the fluctuations in TP are linked 

to luxury P uptake by G. echinulata during recruitment, P released into the water column 

during zooplankton grazing, and G. echinulata senescence. G. echinulata bodies can 

store a significant amount of P, so we believe variation in G. echinulata blooms are likely 

a driver of TP patterns at sites with high blooms.  

Total Phosphorus in Gloeotrichia echinulata Bodies 

     TP in Gloeotrichia echinulata bodies was measured to investigate the role that luxury 

uptake of P plays in determining TP levels of surface waters. To establish a preliminary 
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understanding of the potential for G. echinulata to transfer P from the benthos to the 

water column, the approximate mean TP in a G. echinulata colony (0.8825 µg P colony-1) 

was scaled up to reflect the actual G. echinulata densities. The mean TP measured per G. 

echinulata body (0.8825 µg P colony-1) and the G. echinulata density (0.073 colonies L-1) 

from the date and site the sample was taken from were used. With this calculation, it was 

estimated that 0.064 µg P L-1 could potentially be transferred from the benthos to the 

water column by G. echinulata recruitment.  

      If we assume that the TP in G. echinulata colonies remains the same throughout their 

life cycle and is fairly consistent across sites, we can estimate the potential maximum 

quantity of P that could be transferred from the sediment to the water column by G. 

echinulata recruitment. The largest bloom in Long Pond in 2014 was 39.4 colonies L-1 at 

the resident’s dock (LP2) on July 17th. The calculated potential for TP transferred from 

the benthos to the sediment by G. echinulata is 34.7 µg P L-1. For Great Pond, the largest 

bloom of 15.1 colonies L-1 occurred in the north basin on July 22nd; the potential TP 

transferred was calculated to be 13.3 µg P L-1. This is a significant source of P, especially 

in oligotrophic lakes which commonly have TP of  <5.00 µg P L-1.   

     These are preliminary calculations and further research is required to fully understand 

the role of Gloeotrichia echinulata introducing P into the water column from luxury 

uptake. The initial calculations indicate that the potential for G. echinulata to increase P 

loads in a lake is substantial. For more accurate measurements of P load from 

recruitment, TP of G. echinulata would have to be measured throughout lifecycle stages. 

There are many factors, such as seasonal variation and lake trophic status that would 

influence the TP level of G. echinulata.  

     Forsell and Pettersson (1995) found that in Green Lake, Seattle, Gloeotrichia 

echinuata accounted for 2/3 of the lake’s phosphorus loading into the water column per 

day. This was equivalent to a flux of 0.4-0.6 mg P m-2 day-1. Likewise, at Lake Erken, 

Sweden, researchers in 1991 found that G. echinulata was responsible for 2/3 of total 

phosphorus loading for the lake, or 2.4 mg P m-2 day-1 (Forsell and Pettersson 1995). G. 

echinulata increase the total and organic P released into the lake, which could be a source 

of nutrients for other phytoplankton (Istvanovics et al. 1993). The potential for 

recruitment to be a source of P for other phytoplankton raises significant concern for the 
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Belgrade Lakes because G. echinulata could essentially resuspend P that was removed 

from the lake in previous years (King and Laliberte 2005).   

     It is important to understand luxury uptake of phosphorus by G echinulata because it 

could influence policy-making decisions on whether to implement water quality 

management strategies. For example, the transfer of P from the benthos during 

recruitment could undermine the effects of aluminum sulfate (alum) application. Alum is 

hydrated aluminum sulfate [Al2(SO4)3] that works to mitigate internal P loading by 

binding loosely bound, or mobile P in the water and sediments by forming an aluminum 

hydroxide [Al(OH)3] floc (Driscoll and Schecher 1990). If G. echinulata are able to bind 

immobile P in the sediment P or from the aluminum hydroxide floc, they could 

reintroduce P into the water column. This would undermine aluminum sulfate as a 

mitigation technique. Alum application is being considered by the lake associations in the 

Belgrade lakes as a potential water quality treatment for the future (Bruesewitz, pers. 

comm.). Before these important decisions are made, G. echinulata’s influence should be 

taken into account.  

Chlorophyll-a and Pheophytin 

 Peak Gloeotrichia echinulata densities in both Great Pond and Long Pond 

correspond with peak chlorophyll-a and pheophytin levels. Increased chlorophyll-a 

concentrations could be an indicator of nutrient subsidies to phytoplankton from G. 

echinulata. Additionally, G. echinulata photosynthesis also contributes to chlorophyll-a 

concentration. In some cases, G. echinulata have been shown to increase growth rate, 

Shannon diversity, and taxa richness of phytoplankton (Carey and Rengefors 2010; Carey 

et al. 2014b). In general, the similar peaks in G. echinulata densities, and pheophytin 

concentrations are expected. Pheophytin is a pigment used by cyanobacteria in 

photosynthesis and can be used as an indicator of cyanobacteria growth (Hauer and 

Lamberti 2007). 

Broader Context 

     Gloeotrichia echinulata is both a driver and a consequence of eutrophication, 

particularly in low nutrient lakes. Its monitoring and management influences many 

different aspects of lake systems and neighboring communities. This research looks at the 

impact of G. echinulata on larger lake processes including P cycling and primary 
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production to inform the scientists and stakeholders about the role of G. echinulata in 

eutrophication. On a community level, lake associations can provide useful citizen 

science monitoring of harmful algal blooms along with increasing awareness about 

factors affecting water quality.  

     Gloeotrichia echinulata is found under a wide range of geographic and environmental 

conditions, from lakes in North America, to Europe, to Asia (Geng et al. 2005; Carey et 

al. 2009). Reports of G. echinulata blooms in low nutrient lakes have been increasing 

over the past decade, which is a new trend (Carey et al. 2009). The study of G. echinulata 

in low nutrient lakes has been limited mainly to the Northeastern United States and 

Sweden (Forsell and Pettersson 1995; Carey et al. 2009). The Belgrade Lakes show 

similar patterns to the low nutrient Lake Sunapee, New Hampshire, another G. echinulata 

study site (Carey et al. 2009). TP throughout the summer of 2015 in Long Pond and Great 

Pond matched that of Lake Sunapee, which suggests that in some cases, G. echinulata 

creates similar responses. Overall, G. echinulata creates both similarities and differences 

across lakes, trophic states, and geographic regions (King and Laliberti 2005). More 

research is needed on a broader scale to understand how different lake characteristics 

influence G. echinulata dynamics.  

Implications 

     Modeling P shifts due to Gloeotrichia echinulata at the entire lake level would allow 

researchers to better understand its role in eutrophication. More research is necessary to 

measure TP uptake through G. echinulata life stages to better model P shifts using 

density data. Furthermore, more research is necessary to understand the interaction 

between G. echinulata and aluminum bound P. Previous studies of alum with G. 

echinulata show that alum treatment has no effect on G. echinulata recruitment or bloom 

formation (Sonnichsen et al. 1997), which could indicate that alum treatment does not 

inhibit P assimilation by G. echinulata.  Additionally, it is possible that lakes can shift 

between stable states, from oligotrophic to mesotrophic to eutrophic, as a result of 

cyanobacterial blooms (Cottingham et al. 2015). More research on the influence 

cyanobacteria on the P cycle is needed to understand the potential for G. echinulata 

inducing a shift in stable states in the Belgrade Lakes.  
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     Moreover, microcystin-LR toxin levels need to be investigated at every life stage to 

prevent dangerous human exposure during blooms. Toxin levels are especially important 

for other lakes in Maine such as Lake Auburn in the Lewiston-Auburn area that are used 

as a drinking water source. More information on toxin levels is needed to protect lake 

users and reservoir watersheds from spikes in toxin levels, especially during summer 

blooms.  

Conclusion 

     Harmful algal blooms such as Gloeotrichia echinulata are becoming increasingly 

common in freshwater ecosystems globally (Ho and Michalak 2015). G. echinulata is an 

interesting cyanobacteria that has ecological, social, and economic implications. There is 

more to learn about G. echinulata including its role the P introduction, its life cycle, and 

the toxicity of microcystin-LR. Comprehensive management schemes will need to be 

implemented to control the progression of G. echinulata, especially in oligotrophic lakes 

(Ho and Michalak 2015). With increasing reports of G. echinulata blooms in recent 

decades in low nutrient lakes in New England, Colby’s research efforts are important in 

monitoring density changes, reducing excess nutrient loads, and measuring toxin levels 

(Carey et al. 2008, 2012, 2014a).   

     Possible water quality remediation efforts on Long Pond and Great Pond are not 

possible without first understanding the nutrient dynamics that Gloeotrichia echinulata 

imposes on these specific ecosystems (King and Laliberti 2005). This research is part of a 

larger project of measuring nutrient dynamics in the Belgrade Lakes with a focus on G. 

echinulata. The long-term goal is to understand G. echinulata’s life cycle, nutrient 

dynamics, and role it plays in water quality remediation. As this research shows, G. 

echinulata in the Belgrade Lakes could be affecting internal P loading, phytoplankton 

community fluctuations, and water safety concerns for humans. With climate 

temperatures on the rise and possible increases in external nutrient inputs, cyanobacterial 

blooms will continue to increase posing an increasing threat to human health, ecosystem 

functioning, and recreational use on the lake.  
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