

Harnessing community science data to understand *Gloeostrichia* blooms in the Belgrade Lakes

Danielle Wain (7 Lakes Alliance)
Grady Florance (Colby College)
Adrian Gellert (Colby College)
Whitney King (Colby College)

Colby

Great Pond and Long Pond are part of the Belgrade Lakes chain

	Great	Long-North	Long-South
Surface Area (km ²)	33	5.1	4.1
Mean Depth (m)	6.3	7.5	7.5
Max Depth (m)	21	19	32
Residence Time (yrs)	1.9	0.4	0.3
Mean SDT (m)	6.1	6.3	6.0
Mean TP (ppb)	8.9	7.7	7.4

Considered mesotrophic lakes by Maine DEP trophic state definitions

Both lakes suffer from blooms of *Gloeotrichia*

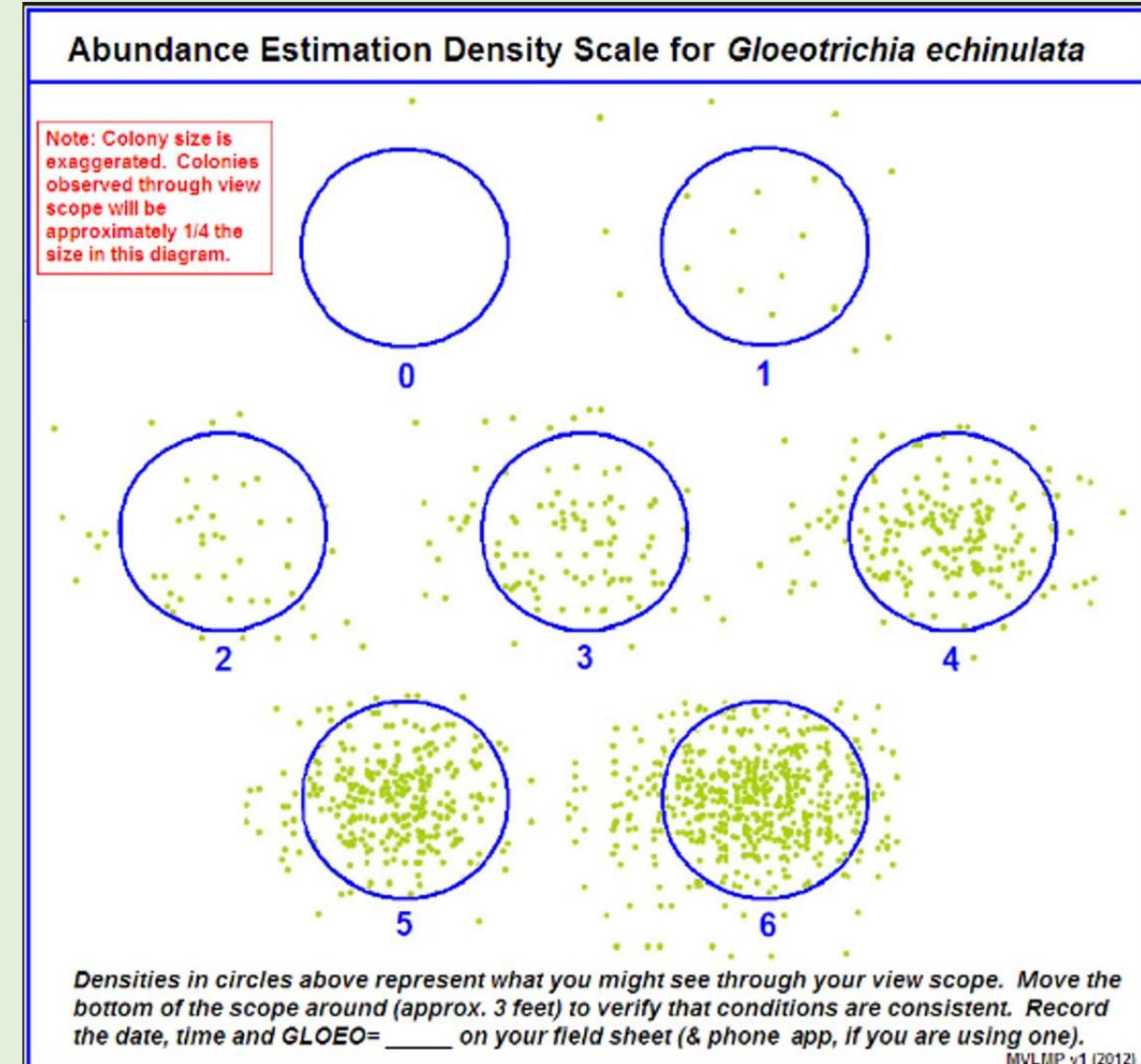
Lake Stewards of Maine

In North America, Gloeo appears in relatively clear lakes during late summer and fall

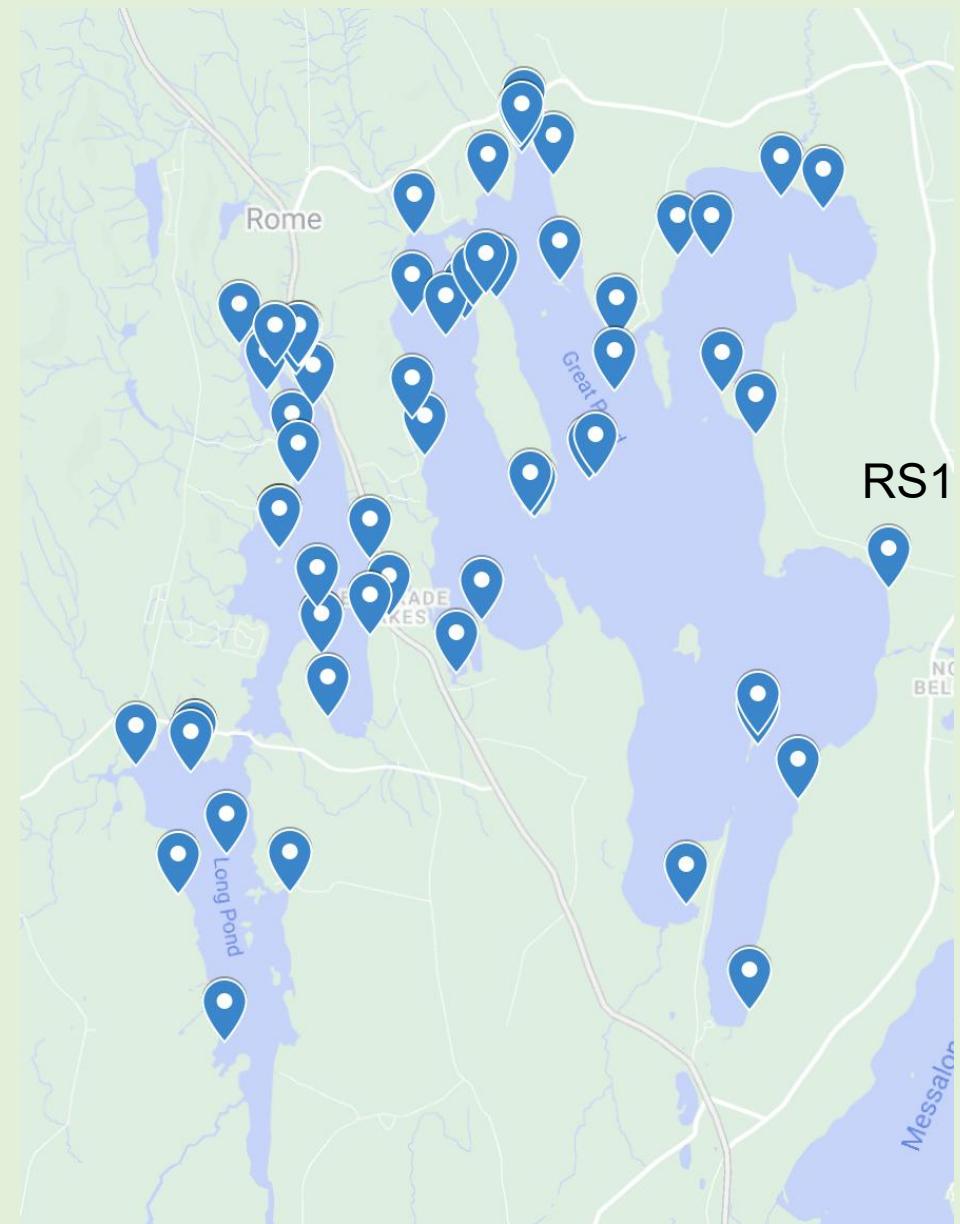
- *Gloeotrichia* (Gloeo for short) is a large (~2 mm) colonial cyanobacteria
- Beyond being a nuisance, Gloeo can also cause some lake users to get itchy skin when they go swimming
- On other lakes, we get whole lake cyanobacteria blooms of other genera; on Great and Long Pond, we get local blooms of Gloeo, mostly on the shoreline.
- Gloeo can produce toxins, but studies on Great Pond and Long Pond have not detected levels of concern (Carey et al. 2012)

Gloeo life cycle creates challenges for observations

- The colonies develop in lake sediments in the spring, recruiting phosphorus from the sediments for growth
- Light at the sediments is required for their growth (which is why clearer lakes are susceptible in the presence of phosphorus laden sediments)
- Once the right conditions are met, the colonies form gas vesicles which allow them to float to the surface, where colonies continue to grow and divide
- Once at the surface, the colonies can be distributed horizontally by wind driven currents


- Spatiotemporal variability makes observing and predicting Gloeo blooms difficult!
- Deep hole sampling misses shoreline accumulations
- Weekly or biweekly shoreline sampling can miss peaks in concentrations

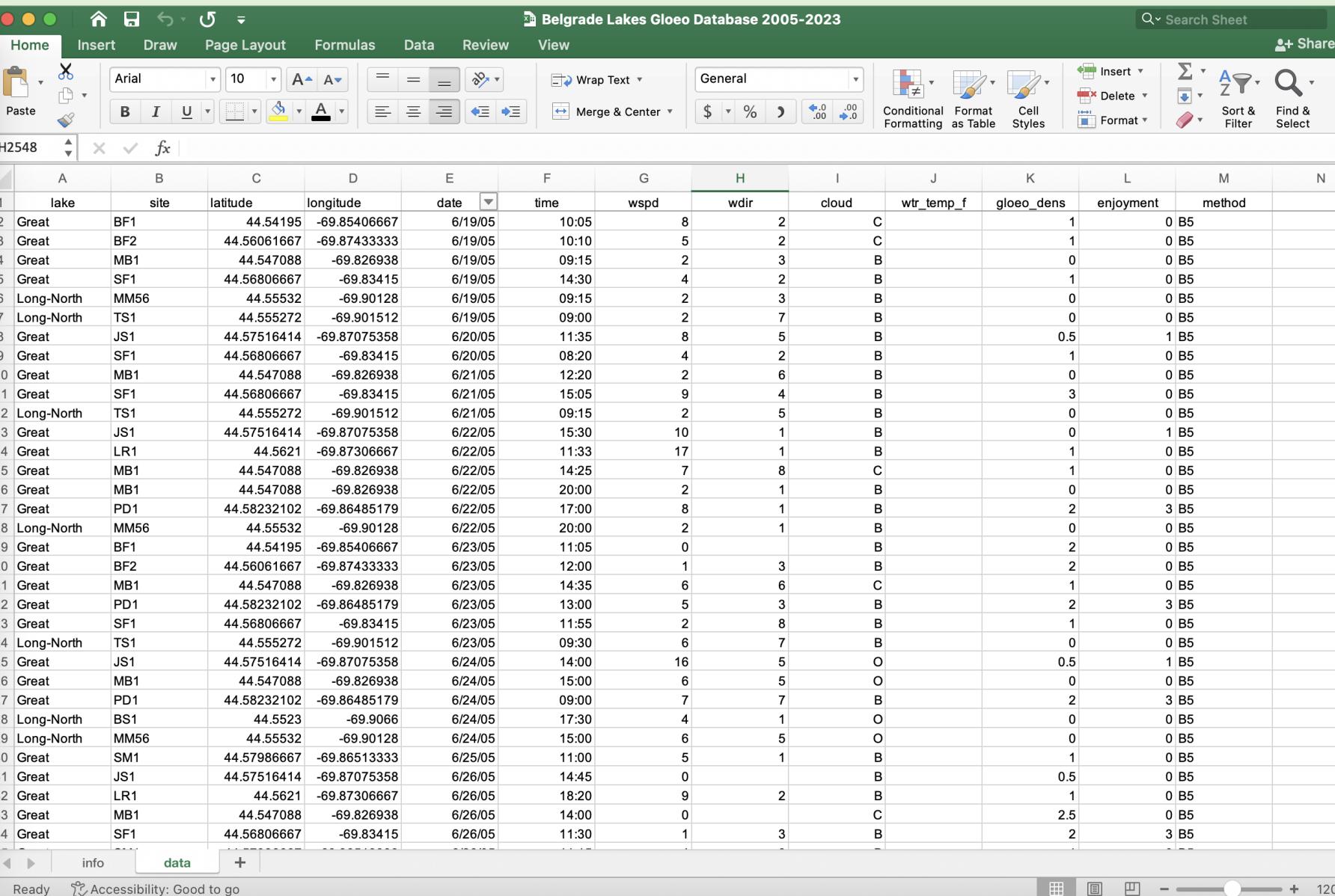
Since 2005, BLA volunteers have observed Gloeo at their docks


Training session at 7 Lakes in 2023 run by Maine DEP

Volunteers observe Gloeo density several times per week

- Program started as a BLA-DEP-BRCA (now 7 Lakes) initiative
- Some evolution of the data sheets over time, but generally similar data has been collected over the past two decades
- Most significant shift was 2023, when we moved from 0-5 scale to the 0-6 scale used across the state

There have been 72 sites across Great Pond and Long Pond

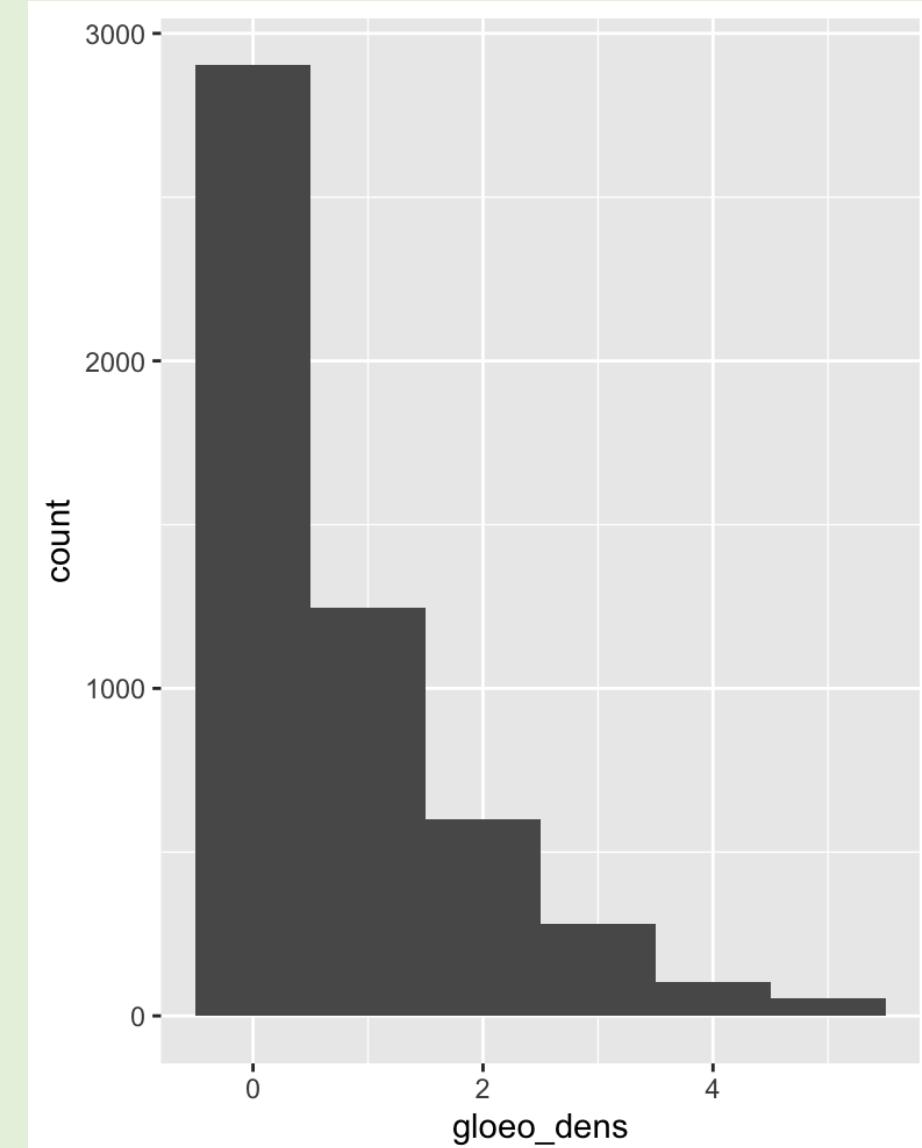


Lake	No. of Sites	No. of Observations
Great	46	3756
Long-North	18	885
Long-South	8	593

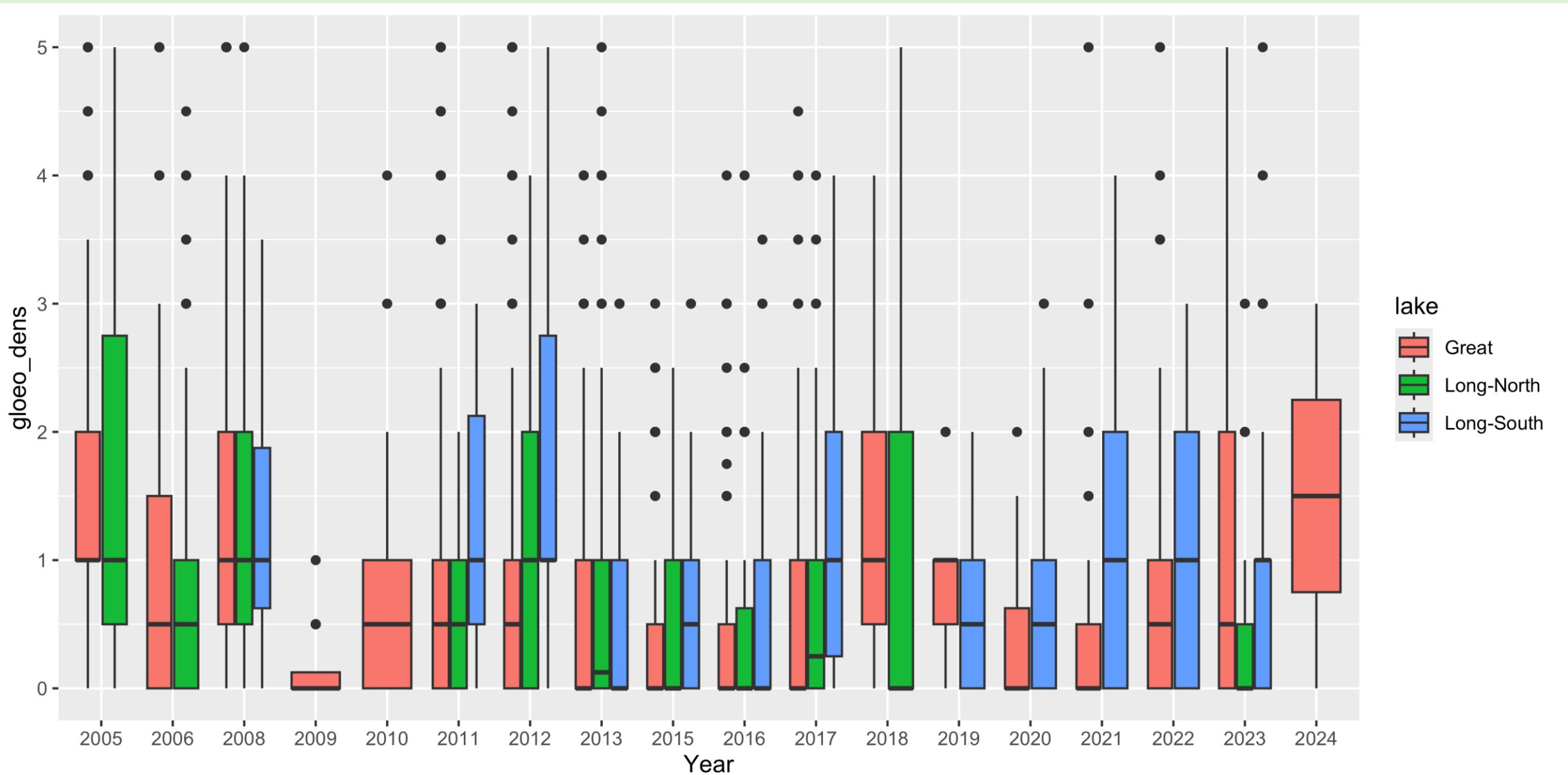
1021 observations by one individual!

This community driven approach has created a unique database

	A	B	C	D	E	F	G	H	I	J	K	L	M	N
1	lake	site	latitude	longitude	date	time	wspd	wdir	cloud	wtr_temp_f	gloeo_dens	enjoyment	method	
2	Great	BF1	44.54195	-69.85406667	6/19/05	10:05	8	2	C		1	0 B5		
3	Great	BF2	44.56061667	-69.87433333	6/19/05	10:10	5	2	C		1	0 B5		
4	Great	MB1	44.547088	-69.826938	6/19/05	09:15	2	3	B		0	0 B5		
5	Great	SF1	44.56806667	-69.83415	6/19/05	14:30	4	2	B		1	0 B5		
6	Long-North	MM56	44.55532	-69.90128	6/19/05	09:15	2	3	B		0	0 B5		
7	Long-North	TS1	44.555272	-69.901512	6/19/05	09:00	2	7	B		0	0 B5		
8	Great	JS1	44.57516414	-69.87075358	6/20/05	11:35	8	5	B		0.5	1 B5		
9	Great	SF1	44.56806667	-69.83415	6/20/05	08:20	4	2	B		1	0 B5		
10	Great	MB1	44.547088	-69.826938	6/21/05	12:20	2	6	B		0	0 B5		
11	Great	SF1	44.56806667	-69.83415	6/21/05	15:05	9	4	B		3	0 B5		
12	Long-North	TS1	44.555272	-69.901512	6/21/05	09:15	2	5	B		0	0 B5		
13	Great	JS1	44.57516414	-69.87075358	6/22/05	15:30	10	1	B		0	1 B5		
14	Great	LR1	44.5621	-69.87306667	6/22/05	11:33	17	1	B		1	0 B5		
15	Great	MB1	44.547088	-69.826938	6/22/05	14:25	7	8	C		1	0 B5		
16	Great	MB1	44.547088	-69.826938	6/22/05	20:00	2	1	B		0	0 B5		
17	Great	PD1	44.58232102	-69.86485179	6/22/05	17:00	8	1	B		2	3 B5		
18	Long-North	MM56	44.55532	-69.90128	6/22/05	20:00	2	1	B		0	0 B5		
19	Great	BF1	44.54195	-69.85406667	6/23/05	11:05	0		B		2	0 B5		
20	Great	BF2	44.56061667	-69.87433333	6/23/05	12:00	1	3	B		2	0 B5		
21	Great	MB1	44.547088	-69.826938	6/23/05	14:35	6	6	C		1	0 B5		
22	Great	PD1	44.58232102	-69.86485179	6/23/05	13:00	5	3	B		2	3 B5		
23	Great	SF1	44.56806667	-69.83415	6/23/05	11:55	2	8	B		1	0 B5		
24	Long-North	TS1	44.555272	-69.901512	6/23/05	09:30	6	7	B		0	0 B5		
25	Great	JS1	44.57516414	-69.87075358	6/24/05	14:00	16	5	O		0.5	1 B5		
26	Great	MB1	44.547088	-69.826938	6/24/05	15:00	6	5	O		0	0 B5		
27	Great	PD1	44.58232102	-69.86485179	6/24/05	09:00	7	7	B		2	3 B5		
28	Long-North	BS1	44.5523	-69.9066	6/24/05	17:30	4	1	O		0	0 B5		
29	Long-North	MM56	44.55532	-69.90128	6/24/05	15:00	6	5	O		0	0 B5		
30	Great	SM1	44.57986667	-69.86513333	6/25/05	11:00	5	1	B		1	0 B5		
31	Great	JS1	44.57516414	-69.87075358	6/26/05	14:45	0		B		0.5	0 B5		
32	Great	LR1	44.5621	-69.87306667	6/26/05	18:20	9	2	B		1	0 B5		
33	Great	MB1	44.547088	-69.826938	6/26/05	14:00	0		C		2.5	0 B5		
34	Great	SF1	44.56806667	-69.83415	6/26/05	11:30	1	3	B		2	3 B5		


- New volunteers are trained by the Maine DEP regularly
- Challenge: Definitively identifying Gloeo as opposed to other particles in the water leads to uncertainty in density observations

Now how can we use all this data to understand Gloeo blooms?


Statistical approaches present challenges

Surmountable challenges, but makes simpler statistical techniques inappropriate

But here are some basic stats anyway

Summary

- **Gloeotrichia is hard to capture by typical routine monitoring programs because of its spatiotemporal heterogeneity**
- **A community science initiative in the Belgrade Lakes region has provided data that covers some of the gaps**
- **This unique dataset has challenges (uncertainty in estimates, uneven distribution of measurements, zero-heavy statistical distribution)**
- **But we can still use this data to test hypotheses on bloom drivers**